Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
translated by 谷歌翻译
Image manipulation localization aims at distinguishing forged regions from the whole test image. Although many outstanding prior arts have been proposed for this task, there are still two issues that need to be further studied: 1) how to fuse diverse types of features with forgery clues; 2) how to progressively integrate multistage features for better localization performance. In this paper, we propose a tripartite progressive integration network (TriPINet) for end-to-end image manipulation localization. First, we extract both visual perception information, e.g., RGB input images, and visual imperceptible features, e.g., frequency and noise traces for forensic feature learning. Second, we develop a guided cross-modality dual-attention (gCMDA) module to fuse different types of forged clues. Third, we design a set of progressive integration squeeze-and-excitation (PI-SE) modules to improve localization performance by appropriately incorporating multiscale features in the decoder. Extensive experiments are conducted to compare our method with state-of-the-art image forensics approaches. The proposed TriPINet obtains competitive results on several benchmark datasets.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Deep learning has been widely used in the perception (e.g., 3D object detection) of intelligent vehicle driving. Due to the beneficial Vehicle-to-Vehicle (V2V) communication, the deep learning based features from other agents can be shared to the ego vehicle so as to improve the perception of the ego vehicle. It is named as Cooperative Perception in the V2V research, whose algorithms have been dramatically advanced recently. However, all the existing cooperative perception algorithms assume the ideal V2V communication without considering the possible lossy shared features because of the Lossy Communication (LC) which is common in the complex real-world driving scenarios. In this paper, we first study the side effect (e.g., detection performance drop) by the lossy communication in the V2V Cooperative Perception, and then we propose a novel intermediate LC-aware feature fusion method to relieve the side effect of lossy communication by a LC-aware Repair Network (LCRN) and enhance the interaction between the ego vehicle and other vehicles by a specially designed V2V Attention Module (V2VAM) including intra-vehicle attention of ego vehicle and uncertainty-aware inter-vehicle attention. The extensive experiment on the public cooperative perception dataset OPV2V (based on digital-twin CARLA simulator) demonstrates that the proposed method is quite effective for the cooperative point cloud based 3D object detection under lossy V2V communication.
translated by 谷歌翻译
LiDAR-based 3D Object detectors have achieved impressive performances in many benchmarks, however, multisensors fusion-based techniques are promising to further improve the results. PointPainting, as a recently proposed framework, can add the semantic information from the 2D image into the 3D LiDAR point by the painting operation to boost the detection performance. However, due to the limited resolution of 2D feature maps, severe boundary-blurring effect happens during re-projection of 2D semantic segmentation into the 3D point clouds. To well handle this limitation, a general multimodal fusion framework MSF has been proposed to fuse the semantic information from both the 2D image and 3D points scene parsing results. Specifically, MSF includes three main modules. First, SOTA off-the-shelf 2D/3D semantic segmentation approaches are employed to generate the parsing results for 2D images and 3D point clouds. The 2D semantic information is further re-projected into the 3D point clouds with calibrated parameters. To handle the misalignment between the 2D and 3D parsing results, an AAF module is proposed to fuse them by learning an adaptive fusion score. Then the point cloud with the fused semantic label is sent to the following 3D object detectors. Furthermore, we propose a DFF module to aggregate deep features in different levels to boost the final detection performance. The effectiveness of the framework has been verified on two public large-scale 3D object detection benchmarks by comparing with different baselines. The experimental results show that the proposed fusion strategies can significantly improve the detection performance compared to the methods using only point clouds and the methods using only 2D semantic information. Most importantly, the proposed approach significantly outperforms other approaches and sets new SOTA results on the nuScenes testing benchmark.
translated by 谷歌翻译
Minimum Bayesian Risk Decoding (MBR) emerges as a promising decoding algorithm in Neural Machine Translation. However, MBR performs poorly with label smoothing, which is surprising as label smoothing provides decent improvement with beam search and improves generality in various tasks. In this work, we show that the issue arises from the un-consistency of label smoothing on the token-level and sequence-level distributions. We demonstrate that even though label smoothing only causes a slight change in the token-level, the sequence-level distribution is highly skewed. We coin the issue \emph{distributional over-smoothness}. To address this issue, we propose a simple and effective method, Distributional Cooling MBR (DC-MBR), which manipulates the entropy of output distributions by tuning down the Softmax temperature. We theoretically prove the equivalence between pre-tuning label smoothing factor and distributional cooling. Experiments on NMT benchmarks validate that distributional cooling improves MBR's efficiency and effectiveness in various settings.
translated by 谷歌翻译
This paper is about an extraordinary phenomenon. Suppose we don't use any low-light images as training data, can we enhance a low-light image by deep learning? Obviously, current methods cannot do this, since deep neural networks require to train their scads of parameters using copious amounts of training data, especially task-related data. In this paper, we show that in the context of fundamental deep learning, it is possible to enhance a low-light image without any task-related training data. Technically, we propose a new, magical, effective and efficient method, termed \underline{Noi}se \underline{SE}lf-\underline{R}egression (NoiSER), which learns a gray-world mapping from Gaussian distribution for low-light image enhancement (LLIE). Specifically, a self-regression model is built as a carrier to learn a gray-world mapping during training, which is performed by simply iteratively feeding random noise. During inference, a low-light image is directly fed into the learned mapping to yield a normal-light one. Extensive experiments show that our NoiSER is highly competitive to current task-related data based LLIE models in terms of quantitative and visual results, while outperforming them in terms of the number of parameters, training time and inference speed. With only about 1K parameters, NoiSER realizes about 1 minute for training and 1.2 ms for inference with 600$\times$400 resolution on RTX 2080 Ti. Besides, NoiSER has an inborn automated exposure suppression capability and can automatically adjust too bright or too dark, without additional manipulations.
translated by 谷歌翻译
Mainstream image caption models are usually two-stage captioners, i.e., calculating object features by pre-trained detector, and feeding them into a language model to generate text descriptions. However, such an operation will cause a task-based information gap to decrease the performance, since the object features in detection task are suboptimal representation and cannot provide all necessary information for subsequent text generation. Besides, object features are usually represented by the last layer features that lose the local details of input images. In this paper, we propose a novel One-Stage Image Captioner (OSIC) with dynamic multi-sight learning, which directly transforms input image into descriptive sentences in one stage. As a result, the task-based information gap can be greatly reduced. To obtain rich features, we use the Swin Transformer to calculate multi-level features, and then feed them into a novel dynamic multi-sight embedding module to exploit both global structure and local texture of input images. To enhance the global modeling of encoder for caption, we propose a new dual-dimensional refining module to non-locally model the interaction of the embedded features. Finally, OSIC can obtain rich and useful information to improve the image caption task. Extensive comparisons on benchmark MS-COCO dataset verified the superior performance of our method.
translated by 谷歌翻译
视频亮点检测长期以来一直是计算机视觉任务中的主题,挖掘出未接触的原始视频输入的用户出现剪辑。但是,在大多数情况下,这一研究中的主流方法建立在封闭的世界假设上,在封闭的世界假设中,固定数量的突出显示类别是提前正确定义的,并且需要同时可用的所有培训数据,并且作为一个结果,相对于突出显示类别和数据集大小的可伸缩性差。为了解决上面提到的问题,我们提出了一个视频突出显示检测器,能够逐步学习,即\ textbf {g} lobal \ textbf {p} rototype \ textbf {e} ncoding(gpe),捕获新定义的视频亮点。通过其相应的原型扩展数据集。除此之外,我们提供了一个注释且昂贵的数据集,称为\ emph {Bytefood},包括超过5.1k的美食视频属于\ emph {cooke},\ emph {eat},\ emph {food Material},\ emph {cooke},和\ emph {演示}。据我们所知,这是第一次将增量学习设置引入视频突出显示检测,从而减轻培训视频输入的负担,并促进了按数据集的大小成比例的传统神经网络的可扩展性和域的数量。此外,所提出的GPE超过了\ emph {Bytefood}上的当前增量学习方法,至少报告了1.57 \%MAP的改善。代码和数据集将更早提供。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译